#ifndef OPENMM_CUSTOMCOMPOUNDBONDFORCE_H_ #define OPENMM_CUSTOMCOMPOUNDBONDFORCE_H_ /* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2008-2016 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #include "TabulatedFunction.h" #include "Force.h" #include "Vec3.h" #include #include "internal/windowsExport.h" namespace OpenMM { /** * This class supports a wide variety of bonded interactions. It defines a "bond" as a single energy term * that depends on the positions of a fixed set of particles. The number of particles involved in a bond, and how * the energy depends on their positions, is configurable. It may depend on the positions of individual particles, * the distances between pairs of particles, the angles formed by sets of three particles, and the dihedral * angles formed by sets of four particles. * * We refer to the particles in a bond as p1, p2, p3, etc. For each bond, CustomCompoundBondForce evaluates a * user supplied algebraic expression to determine the interaction energy. The expression may depend on the * following variables and functions: * * * * The expression also may involve tabulated functions, and may depend on arbitrary * global and per-bond parameters. * * To use this class, create a CustomCompoundBondForce object, passing an algebraic expression to the constructor * that defines the interaction energy of each bond. Then call addPerBondParameter() to define per-bond * parameters and addGlobalParameter() to define global parameters. The values of per-bond parameters are specified * as part of the system definition, while values of global parameters may be modified during a simulation by calling * Context::setParameter(). * * Next, call addBond() to define bonds and specify their parameter values. After a bond has been added, you can * modify its parameters by calling setBondParameters(). This will have no effect on Contexts that already exist unless * you call updateParametersInContext(). * * As an example, the following code creates a CustomCompoundBondForce that implements a Urey-Bradley potential. This * is an interaction between three particles that depends on the angle formed by p1-p2-p3, and on the distance between * p1 and p3. * * CustomCompoundBondForce* force = new CustomCompoundBondForce(3, "0.5*(kangle*(angle(p1,p2,p3)-theta0)^2+kbond*(distance(p1,p3)-r0)^2)"); * * This force depends on four parameters: kangle, kbond, theta0, and r0. The following code defines these as per-bond parameters: * *
 * force->addPerBondParameter("kangle");
 * force->addPerBondParameter("kbond");
 * force->addPerBondParameter("theta0");
 * force->addPerBondParameter("r0");
 * 
* * This class also has the ability to compute derivatives of the potential energy with respect to global parameters. * Call addEnergyParameterDerivative() to request that the derivative with respect to a particular parameter be * computed. You can then query its value in a Context by calling getState() on it. * * Expressions may involve the operators + (add), - (subtract), * (multiply), / (divide), and ^ (power), and the following * functions: sqrt, exp, log, sin, cos, sec, csc, tan, cot, asin, acos, atan, atan2, sinh, cosh, tanh, erf, erfc, min, max, abs, floor, ceil, step, delta, select. All trigonometric functions * are defined in radians, and log is the natural logarithm. step(x) = 0 if x is less than 0, 1 otherwise. delta(x) = 1 if x is 0, 0 otherwise. * select(x,y,z) = z if x = 0, y otherwise. * * In addition, you can call addTabulatedFunction() to define a new function based on tabulated values. You specify the function by * creating a TabulatedFunction object. That function can then appear in the expression. */ class OPENMM_EXPORT CustomCompoundBondForce : public Force { public: /** * Create a CustomCompoundBondForce. * * @param numParticles the number of particles used to define each bond * @param energy an algebraic expression giving the interaction energy of each bond as a function * of particle positions, inter-particle distances, angles, and dihedrals, and any global * and per-bond parameters */ explicit CustomCompoundBondForce(int numParticles, const std::string& energy); ~CustomCompoundBondForce(); /** * Get the number of particles used to define each bond. */ int getNumParticlesPerBond() const { return particlesPerBond; } /** * Get the number of bonds for which force field parameters have been defined. */ int getNumBonds() const { return bonds.size(); } /** * Get the number of per-bond parameters that the interaction depends on. */ int getNumPerBondParameters() const { return bondParameters.size(); } /** * Get the number of global parameters that the interaction depends on. */ int getNumGlobalParameters() const { return globalParameters.size(); } /** * Get the number of global parameters with respect to which the derivative of the energy * should be computed. */ int getNumEnergyParameterDerivatives() const { return energyParameterDerivatives.size(); } /** * Get the number of tabulated functions that have been defined. */ int getNumTabulatedFunctions() const { return functions.size(); } /** * Get the number of tabulated functions that have been defined. * * @deprecated This method exists only for backward compatibility. Use getNumTabulatedFunctions() instead. */ int getNumFunctions() const { return functions.size(); } /** * Get the algebraic expression that gives the interaction energy of each bond */ const std::string& getEnergyFunction() const; /** * Set the algebraic expression that gives the interaction energy of each bond */ void setEnergyFunction(const std::string& energy); /** * Add a new per-bond parameter that the interaction may depend on. * * @param name the name of the parameter * @return the index of the parameter that was added */ int addPerBondParameter(const std::string& name); /** * Get the name of a per-bond parameter. * * @param index the index of the parameter for which to get the name * @return the parameter name */ const std::string& getPerBondParameterName(int index) const; /** * Set the name of a per-bond parameter. * * @param index the index of the parameter for which to set the name * @param name the name of the parameter */ void setPerBondParameterName(int index, const std::string& name); /** * Add a new global parameter that the interaction may depend on. The default value provided to * this method is the initial value of the parameter in newly created Contexts. You can change * the value at any time by calling setParameter() on the Context. * * @param name the name of the parameter * @param defaultValue the default value of the parameter * @return the index of the parameter that was added */ int addGlobalParameter(const std::string& name, double defaultValue); /** * Get the name of a global parameter. * * @param index the index of the parameter for which to get the name * @return the parameter name */ const std::string& getGlobalParameterName(int index) const; /** * Set the name of a global parameter. * * @param index the index of the parameter for which to set the name * @param name the name of the parameter */ void setGlobalParameterName(int index, const std::string& name); /** * Get the default value of a global parameter. * * @param index the index of the parameter for which to get the default value * @return the parameter default value */ double getGlobalParameterDefaultValue(int index) const; /** * Set the default value of a global parameter. * * @param index the index of the parameter for which to set the default value * @param defaultValue the default value of the parameter */ void setGlobalParameterDefaultValue(int index, double defaultValue); /** * Request that this Force compute the derivative of its energy with respect to a global parameter. * The parameter must have already been added with addGlobalParameter(). * * @param name the name of the parameter */ void addEnergyParameterDerivative(const std::string& name); /** * Get the name of a global parameter with respect to which this Force should compute the * derivative of the energy. * * @param index the index of the parameter derivative, between 0 and getNumEnergyParameterDerivatives() * @return the parameter name */ const std::string& getEnergyParameterDerivativeName(int index) const; /** * Add a bond to the force * * @param particles the indices of the particles the bond depends on * @param parameters the list of per-bond parameter values for the new bond * @return the index of the bond that was added */ int addBond(const std::vector& particles, const std::vector& parameters=std::vector()); /** * Get the properties of a bond. * * @param index the index of the bond to get * @param[out] particles the indices of the particles in the bond * @param[out] parameters the list of per-bond parameter values for the bond */ void getBondParameters(int index, std::vector& particles, std::vector& parameters) const; /** * Set the properties of a bond. * * @param index the index of the bond to set * @param particles the indices of the particles in the bond * @param parameters the list of per-bond parameter values for the bond */ void setBondParameters(int index, const std::vector& particles, const std::vector& parameters=std::vector()); /** * Add a tabulated function that may appear in the energy expression. * * @param name the name of the function as it appears in expressions * @param function a TabulatedFunction object defining the function. The TabulatedFunction * should have been created on the heap with the "new" operator. The * Force takes over ownership of it, and deletes it when the Force itself is deleted. * @return the index of the function that was added */ int addTabulatedFunction(const std::string& name, TabulatedFunction* function); /** * Get a const reference to a tabulated function that may appear in the energy expression. * * @param index the index of the function to get * @return the TabulatedFunction object defining the function */ const TabulatedFunction& getTabulatedFunction(int index) const; /** * Get a reference to a tabulated function that may appear in the energy expression. * * @param index the index of the function to get * @return the TabulatedFunction object defining the function */ TabulatedFunction& getTabulatedFunction(int index); /** * Get the name of a tabulated function that may appear in the energy expression. * * @param index the index of the function to get * @return the name of the function as it appears in expressions */ const std::string& getTabulatedFunctionName(int index) const; /** * Add a tabulated function that may appear in the energy expression. * * @deprecated This method exists only for backward compatibility. Use addTabulatedFunction() instead. */ int addFunction(const std::string& name, const std::vector& values, double min, double max); /** * Get the parameters for a tabulated function that may appear in the energy expression. * * @deprecated This method exists only for backward compatibility. Use getTabulatedFunctionParameters() instead. * If the specified function is not a Continuous1DFunction, this throws an exception. */ void getFunctionParameters(int index, std::string& name, std::vector& values, double& min, double& max) const; /** * Set the parameters for a tabulated function that may appear in the energy expression. * * @deprecated This method exists only for backward compatibility. Use setTabulatedFunctionParameters() instead. * If the specified function is not a Continuous1DFunction, this throws an exception. */ void setFunctionParameters(int index, const std::string& name, const std::vector& values, double min, double max); /** * Update the per-bond parameters in a Context to match those stored in this Force object. This method provides * an efficient method to update certain parameters in an existing Context without needing to reinitialize it. * Simply call setBondParameters() to modify this object's parameters, then call updateParametersInContext() * to copy them over to the Context. * * This method has several limitations. The only information it updates is the values of per-bond parameters. * All other aspects of the Force (such as the energy function) are unaffected and can only be changed by reinitializing * the Context. The set of particles involved in a bond cannot be changed, nor can new bonds be added. */ void updateParametersInContext(Context& context); /** * Set whether this force should apply periodic boundary conditions when calculating displacements. * Usually this is not appropriate for bonded forces, but there are situations when it can be useful. */ void setUsesPeriodicBoundaryConditions(bool periodic); /** * Returns whether or not this force makes use of periodic boundary * conditions. * * @returns true if force uses PBC and false otherwise */ bool usesPeriodicBoundaryConditions() const; protected: ForceImpl* createImpl() const; private: class BondInfo; class BondParameterInfo; class GlobalParameterInfo; class FunctionInfo; int particlesPerBond; std::string energyExpression; std::vector bondParameters; std::vector globalParameters; std::vector bonds; std::vector functions; std::vector energyParameterDerivatives; bool usePeriodic; }; /** * This is an internal class used to record information about a bond. * @private */ class CustomCompoundBondForce::BondInfo { public: std::vector particles; std::vector parameters; BondInfo() { } BondInfo(const std::vector& particles, const std::vector& parameters) : particles(particles), parameters(parameters) { } }; /** * This is an internal class used to record information about a per-bond parameter. * @private */ class CustomCompoundBondForce::BondParameterInfo { public: std::string name; BondParameterInfo() { } BondParameterInfo(const std::string& name) : name(name) { } }; /** * This is an internal class used to record information about a global parameter. * @private */ class CustomCompoundBondForce::GlobalParameterInfo { public: std::string name; double defaultValue; GlobalParameterInfo() { } GlobalParameterInfo(const std::string& name, double defaultValue) : name(name), defaultValue(defaultValue) { } }; /** * This is an internal class used to record information about a tabulated function. * @private */ class CustomCompoundBondForce::FunctionInfo { public: std::string name; TabulatedFunction* function; FunctionInfo() { } FunctionInfo(const std::string& name, TabulatedFunction* function) : name(name), function(function) { } }; } // namespace OpenMM #endif /*OPENMM_CUSTOMCOMPOUNDBONDFORCE_H_*/