#ifndef OPENMM_CUSTOMEXTERNALFORCE_H_ #define OPENMM_CUSTOMEXTERNALFORCE_H_ /* -------------------------------------------------------------------------- * * OpenMM * * -------------------------------------------------------------------------- * * This is part of the OpenMM molecular simulation toolkit originating from * * Simbios, the NIH National Center for Physics-Based Simulation of * * Biological Structures at Stanford, funded under the NIH Roadmap for * * Medical Research, grant U54 GM072970. See https://simtk.org. * * * * Portions copyright (c) 2008-2012 Stanford University and the Authors. * * Authors: Peter Eastman * * Contributors: * * * * Permission is hereby granted, free of charge, to any person obtaining a * * copy of this software and associated documentation files (the "Software"), * * to deal in the Software without restriction, including without limitation * * the rights to use, copy, modify, merge, publish, distribute, sublicense, * * and/or sell copies of the Software, and to permit persons to whom the * * Software is furnished to do so, subject to the following conditions: * * * * The above copyright notice and this permission notice shall be included in * * all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * * USE OR OTHER DEALINGS IN THE SOFTWARE. * * -------------------------------------------------------------------------- */ #include "Force.h" #include "Vec3.h" #include #include "internal/windowsExport.h" namespace OpenMM { /** * This class implements an "external" force on particles. The force may be applied to any subset of the particles * in the System. The force on each particle is specified by an arbitrary algebraic expression, which may depend * on the current position of the particle as well as on arbitrary global and per-particle parameters. * * To use this class, create a CustomExternalForce object, passing an algebraic expression to the constructor * that defines the potential energy of each affected particle. The expression may depend on the particle's x, y, and * z coordinates, as well as on any parameters you choose. Then call addPerParticleParameter() to define per-particle * parameters, and addGlobalParameter() to define global parameters. The values of per-particle parameters are specified as * part of the system definition, while values of global parameters may be modified during a simulation by calling Context::setParameter(). * Finally, call addParticle() once for each particle that should be affected by the force. After a particle has been added, * you can modify its parameters by calling setParticleParameters(). This will have no effect on Contexts that already exist unless * you call updateParametersInContext(). * * As an example, the following code creates a CustomExternalForce that attracts each particle to a target position (x0, y0, z0) * via a harmonic potential: * * CustomExternalForce* force = new CustomExternalForce("k*((x-x0)^2+(y-y0)^2+(z-z0)^2)"); * * This force depends on four parameters: the spring constant k and equilibrium coordinates x0, y0, and z0. The following code defines these parameters: * *
 * force->addGlobalParameter("k", 100.0);
 * force->addPerParticleParameter("x0");
 * force->addPerParticleParameter("y0");
 * force->addPerParticleParameter("z0");
 * 
* * Special care is needed in systems that use periodic boundary conditions. In that case, each particle really represents * an infinite set of particles repeating through space. The variables x, y, and z contain the coordinates of one of those * periodic copies, but there is no guarantee about which. It might even change from one time step to the next. You can handle * this situation by using the function periodicdistance(x1, y1, z1, x2, y2, z2), which returns the minimum distance between * periodic copies of the points (x1, y1, z1) and (x2, y2, z2). For example, the force given above would be rewritten as * * CustomExternalForce* force = new CustomExternalForce("k*periodicdistance(x, y, z, x0, y0, z0)^2"); * * Expressions may involve the operators + (add), - (subtract), * (multiply), / (divide), and ^ (power), and the following * functions: sqrt, exp, log, sin, cos, sec, csc, tan, cot, asin, acos, atan, atan2, sinh, cosh, tanh, erf, erfc, min, max, abs, floor, ceil, step, delta, select. All trigonometric functions * are defined in radians, and log is the natural logarithm. step(x) = 0 if x is less than 0, 1 otherwise. delta(x) = 1 if x is 0, 0 otherwise. * select(x,y,z) = z if x = 0, y otherwise. */ class OPENMM_EXPORT CustomExternalForce : public Force { public: /** * Create a CustomExternalForce. * * @param energy an algebraic expression giving the potential energy of each particle as a function * of its x, y, and z coordinates */ explicit CustomExternalForce(const std::string& energy); /** * Get the number of particles for which force field parameters have been defined. */ int getNumParticles() const { return particles.size(); } /** * Get the number of per-particle parameters that the force depends on */ int getNumPerParticleParameters() const { return parameters.size(); } /** * Get the number of global parameters that the force depends on. */ int getNumGlobalParameters() const { return globalParameters.size(); } /** * Get the algebraic expression that gives the potential energy of each particle */ const std::string& getEnergyFunction() const; /** * Set the algebraic expression that gives the potential energy of each particle */ void setEnergyFunction(const std::string& energy); /** * Add a new per-particle parameter that the force may depend on. * * @param name the name of the parameter * @return the index of the parameter that was added */ int addPerParticleParameter(const std::string& name); /** * Get the name of a per-particle parameter. * * @param index the index of the parameter for which to get the name * @return the parameter name */ const std::string& getPerParticleParameterName(int index) const; /** * Set the name of a per-particle parameter. * * @param index the index of the parameter for which to set the name * @param name the name of the parameter */ void setPerParticleParameterName(int index, const std::string& name); /** * Add a new global parameter that the interaction may depend on. The default value provided to * this method is the initial value of the parameter in newly created Contexts. You can change * the value at any time by calling setParameter() on the Context. * * @param name the name of the parameter * @param defaultValue the default value of the parameter * @return the index of the parameter that was added */ int addGlobalParameter(const std::string& name, double defaultValue); /** * Get the name of a global parameter. * * @param index the index of the parameter for which to get the name * @return the parameter name */ const std::string& getGlobalParameterName(int index) const; /** * Set the name of a global parameter. * * @param index the index of the parameter for which to set the name * @param name the name of the parameter */ void setGlobalParameterName(int index, const std::string& name); /** * Get the default value of a global parameter. * * @param index the index of the parameter for which to get the default value * @return the parameter default value */ double getGlobalParameterDefaultValue(int index) const; /** * Set the default value of a global parameter. * * @param index the index of the parameter for which to set the default value * @param defaultValue the default value of the parameter */ void setGlobalParameterDefaultValue(int index, double defaultValue); /** * Add a particle term to the force field. * * @param particle the index of the particle this term is applied to * @param parameters the list of parameters for the new force term * @return the index of the particle term that was added */ int addParticle(int particle, const std::vector& parameters=std::vector()); /** * Get the force field parameters for a force field term. * * @param index the index of the particle term for which to get parameters * @param[out] particle the index of the particle this term is applied to * @param[out] parameters the list of parameters for the force field term */ void getParticleParameters(int index, int& particle, std::vector& parameters) const; /** * Set the force field parameters for a force field term. * * @param index the index of the particle term for which to set parameters * @param particle the index of the particle this term is applied to * @param parameters the list of parameters for the force field term */ void setParticleParameters(int index, int particle, const std::vector& parameters=std::vector()); /** * Update the per-particle parameters in a Context to match those stored in this Force object. This method provides * an efficient method to update certain parameters in an existing Context without needing to reinitialize it. * Simply call setParticleParameters() to modify this object's parameters, then call updateParametersInContext() * to copy them over to the Context. * * This method has several limitations. The only information it updates is the values of per-particle parameters. * All other aspects of the Force (such as the energy function) are unaffected and can only be changed by reinitializing * the Context. Also, this method cannot be used to add new particles, only to change the parameters of existing ones. */ void updateParametersInContext(Context& context); /** * Returns whether or not this force makes use of periodic boundary * conditions. * * @returns false */ bool usesPeriodicBoundaryConditions() const; protected: ForceImpl* createImpl() const; private: class ParticleInfo; class ParticleParameterInfo; class GlobalParameterInfo; std::string energyExpression; std::vector parameters; std::vector globalParameters; std::vector particles; }; /** * This is an internal class used to record information about a particle. * @private */ class CustomExternalForce::ParticleInfo { public: int particle; std::vector parameters; ParticleInfo() : particle(-1) { } ParticleInfo(int particle, const std::vector& parameters) : particle(particle), parameters(parameters) { } }; /** * This is an internal class used to record information about a per-particle parameter. * @private */ class CustomExternalForce::ParticleParameterInfo { public: std::string name; ParticleParameterInfo() { } ParticleParameterInfo(const std::string& name) : name(name) { } }; /** * This is an internal class used to record information about a global parameter. * @private */ class CustomExternalForce::GlobalParameterInfo { public: std::string name; double defaultValue; GlobalParameterInfo() { } GlobalParameterInfo(const std::string& name, double defaultValue) : name(name), defaultValue(defaultValue) { } }; } // namespace OpenMM #endif /*OPENMM_CUSTOMEXTERNALFORCE_H_*/