This example shows how to solve a scalar minimization problem with nonlinear inequality constraints. The problem is to find x that solves
(6-56) |
subject to the constraints
x1x2 – x1 – x2 ≤
–1.5,
x1x2 ≥
–10.
Because neither of the constraints is linear, you cannot pass
the constraints to fmincon
at
the command line. Instead you can create a second file, confun.m
,
that returns the value at both constraints at the current x
in
a vector c
. The constrained optimizer, fmincon
,
is then invoked. Because fmincon
expects the constraints
to be written in the form c(x) ≤ 0, you
must rewrite your constraints in the form
x1x2 – x1 – x2 +
1.5 ≤ 0, –x1x2 –10 ≤ 0. | (6-57) |
function f = objfun(x) f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);
function [c, ceq] = confun(x) % Nonlinear inequality constraints c = [1.5 + x(1)*x(2) - x(1) - x(2); -x(1)*x(2) - 10]; % Nonlinear equality constraints ceq = [];
x0 = [-1,1]; % Make a starting guess at the solution options = optimoptions(@fmincon,'Algorithm','sqp'); [x,fval] = ... fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options);
fmincon
produces the solution x
with
function value fval
:
x,fval x = -9.5474 1.0474 fval = 0.0236
You can evaluate the constraints at the solution by entering
[c,ceq] = confun(x)
This returns numbers close to zero, such as
c = 1.0e-14 * -0.6661 0.7105 ceq = []
Note that both constraint values are, to within a small tolerance,
less than or equal to 0; that is, x
satisfies c(x) ≤ 0.