Creation of the structure of a model graph
A model graph is used in the recognition process and the morphometry statistics process. It is responsible for structuring labels allowed in a data (sulcal) graph, calculating descriptors, and assessing a labeling during recognition. For the latter task, the model must have been trained to learn a dataset.
The current process builds the model graph structure, and the model graph learning proccess performs training.
Otherwise ther is also a little pipeline which joins both.
model_graph: Model graph ( sortie )
learningbase_data_graphs: ListOf ( input )
testbase_data_graphs: ListOf ( input )
labels_translation_map: Label translation ( entrée )
template_node_model: Template model ( entrée )
template_rel_model: Template model ( entrée )
template_domain_model: Template model domain ( entrée )
fallback_rel_model: Template model ( entrée )
model_version: String ( optional, input )
data_compatibility_version: String ( optional, input )
Toolbox : Morphologist
Niveau d'utilisateur : 2
Identifiant :
modelgraphcreation
Nom de fichier :
brainvisa/toolboxes/morphologist/processes/Sulci/SulcalModel/modelgraphcreation.py
Supported file formats :
model_graph :Graph and datalabels_translation_map :Label Translation, DEF Label Translationtemplate_node_model :Template modeltemplate_rel_model :Template modeltemplate_domain_model :Template model domainfallback_rel_model :Template model